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a b s t r a c t

A special class of mechanical systems is considered, the linearized equations of which either belong to
the class of time-varying systems, reducible to stationary systems using constructive Lyapunov transfor-
mations or to systems close to these. A method of decomposing of the matrices of a system, which differs
from the traditional method, is proposed for investigating of the stability of motion. It is shown that the
conclusions concerning the stability are more complete in the case of this decomposition of the system
matrix. A number of problems on the stability of motion of various mechanical systems is considered as
examples.
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1. Linear time-varying systems of special form

Consider the first-order linear, time-varying system

(1.1)

where x is the n × 1 vector of the state of the system and A(t) is an n × n matrix, the elements of which are continuously differentiable
functions of the time t. Henceforth, t ∈ [0, ∞) everywhere unless otherwise stated.

The case was considered in Ref. 1 when the matrix A(t) satisfies the equation

(1.2)

where C is a constant n × n matrix. The transformation

(1.3)

reduces system (1.1) to the stationary form

and the fundamental matrix of system (1.1) is calculated using the formula

A number of examples of systems of this class have been considered.2,3

It is well known that a system of equations of motion of holonomic mechanical systems that has been linearized in the neighbourhood
of a certain preset motion can be represented in the form

(1.4)

where x is an n × 1 state vector and Ni(t)(i = 1, 2, 3) is an n × n matrix with continuously differentiable elements.
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We will now consider a special class of mechanical systems that is of both theoretical and practical interest (see the examples below),
the matrices Ni(t) of which satisfy Eq. (1.2). The transformation (1.3) reduces system (1.4) to a stationary system of the form

(1.5)

Here, Ni0 = Ni(0) (i = 1, 2, 3).
The investigation of the solutions of the time-varying system (1.4) reduces to an investigation of the solutions of the stationary system

(1.5) and an analysis of transformation (1.3).
The matrix N1(t) is symmetric in the majority of mechanical problems. The solutions of the matrix Eq. (1.2) for the matrices Ni(t) have

the form

(1.6)

It can be shown that the matrix N1(t), represented in the form (1.6), satisfies the symmetry property if and only if the matrix C is skew-
symmetric CT = −C. The matrix exp(Ct) is then bounded and, consequently, the transformation (1.3) is a Lyapunov transformation.

The investigation of the stability of the time-varying system (1.4) therefore reduces to an analysis of the stability of the stationary system
(1.5). The necessary and sufficient conditions for the stability of system (1.4) are determined by the roots of the characteristic equation of
system (1.5)

In order to use the Kelvin-Chetayev theorems and their generalizations4–8 to investigate the stability of system (1.5), it is necessary to
consider the structure of the matrices of system (1.5).

It has already been pointed out that the matrix N1(t) is assumed to be symmetric. In the general case, the matrices G and K do not
possess any symmetry property, even if the matrices N2(t) and N3(t) in the initial system (1.4) were symmetric or skew-symmetric.

Suppose N1(t) = E (E is a unit n × n matrix). We now calculate the conditions that the matrices of the initial system must satisfy in order
for the matrices of the reduced system (1.5) to possess the following properties:

1) G = GT, K = KT if and only if

2) G = GT, K = −KT if and only if

3) G = −GT, K = −KT if and only if

4) G = −GT, K = KT if and only if

In particular, if N20C = CN20, then N2(t) = N20 = const, NT
30 = N30.

In this case, the reduced system retains the structure of the initial system, that is, a system containing time-varying potential forces and
stationary gyroscopic forces reduces to the stationary system (1.5) with the same structure. The structure of the stationary system will also
be the same when there are no gyroscopic forces (N2(t) 0) in the initial time-varying system (1.4).

System (1.4), when

(1.7)

has a time-varying integral

It can be used as the Lyapunov function: the function V will be positive-definite if the matrix

(1.8)

is positive-definite and, by virtue of system (1.4), its total derivative is identically equal to zero, that is, the following theorem holds.

Theorem. Suppose that, in system (1.4), the matrices N1(t) and N2(t) satisfy conditions (1.7) and that the symmetric matrix N3(t) satisfies
condition (1.2). Then, system (1.4) is stable if the matrix K (1.8) is positive-definite.
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It is obvious that, in the case when the time-varying system is reducible to a stationary system using a Lyapunov transformation, an
exhaustive analysis of the stability of the initial system can be carried out.

Example. Consider the system

(1.9)

According to a well-known theorem,9 this system has bounded solutions for sufficiently small |b| if a > 0 and m� �= √
a(m = 1, 2, . . .). If,

however, a < 0, it is impossible to draw any conclusions regarding the behaviour of this system on the basis of known theorems.

At the same time, it can be shown that the matrix A(t) satisfies Eq. (1.2) when C =
∥
∥
∥
∥

0 �
−� 0

∥
∥
∥
∥

. The Lyapunov transformation (1.3) reduces

system (1.9) to the stationary system

(1.10)

the characteristic equation of which can be represented in the form

The necessary and sufficient conditions for system (1.10) and, consequently, system (1.9) to be stable have the form

(1.11)

Conditions (1.11) show that the system is stable when a > 0 in the case of the constraints imposed on the parameter b. If �2 = a, the
system is unstable for any values of the parameter b �= 0.

If a < 0, the degree if instability of system (1.10) will be even and, if �2 > a + b, gyroscopic stabilization of the system is ensured for a
sufficiently high frequency � and values of the parameter b lying in the bounded domain (1.11), the width of which (a + �2)2 tends to zero
when �2 → |a|.

The investigation of the stability of linear time-varying systems of the general form of (1.1) is a difficult problem that has not yet been
completely solved. The traditional method9–12 for investigating of the stability of such systems consists of representing the system matrix
in the form of two terms: A(t) = A0 + A1(t), the first of which is constant and the second of which is small in a certain sense. Conclusions
concerning the stability of the initial system can be drawn from the stability properties of the stationary system with the matrix A0 when
specific conditions are satisfied.9–12

The proposed approach consists of the following. We assume that a different partitioning of the coefficient matrix of system (1.1):
A(t) = Ã0(t) + Ã1(t) is possible such that the matrix Ã1(t) is small and the system

(1.12)

is reducible to a stationary system by means of a constructive Lyapunov transformation

(1.13)

In particular, if system (1.12) is integrable in closed form and its fundamental matrix �(t, 0) and the matrix �−1(t, 0) are bounded, then
T(t) = �(t, 0). The transformation (1.13) then reduces system (1.1) to the form

(1.14)

where the matrix B1(t) is small.
As indicated above, well-known theorems on the stability of linear systems with an almost constant matrix9–12 can be used to analyze

the stability of system (1.14). In this method of decomposition of the matrix of the initial system, the information on a dynamical object
contained in the matrix A(t) is used more fully which naturally leads to more accurate conclusions regarding stability.

We will assume that the matrices Ni(t) in system (1.4) can be represented in the form

(1.15)

where the matrices N0
i

(t) satisfy Eq. (1.2), � > 0 is a small parameter and the elements of the matrices Ri(t, �) are continuous bounded
functions of t and analytic functions of the parameter � in the neighbourhood of � = 0.

In this case, transformation (1.3) reduces system (1.4) to the form

(1.16)

where Ki(t) are bounded functions and the operator L0y is defined by the second formula of (1.5).
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By changing from system (1.4) to a system of first order equations in Cauchy form, it can be shown that, in view of the boundedness
of the matrices Ki(t), assertions hold which are analogous to the theorems on the stability of first-order systems with an almost constant
matrix.9–12

2. The problem of the parametric oscillations of a bearing housing and a shaft13

A shaft of length l and mass per unit length m has an eccentricity e and is located in a housing mounted on three elastic shock absorbers.
When the shaft rotates with an angular velocity �, the housing oscillates. The position of the axis of rotation of the shaft relative to a fixed
system of coordinates is characterized by small angles of deviations from the vertical � and �.

The linearized system of equations of motion has the form13

(2.1)

Here,

� is the frequency of natural oscillations of the housing and � > 0 is a certain parameter.

It can be shown that the matrices A(t) and G(t) satisfy an equation of the form of (1.2) with the matrix C =
∥
∥
∥
∥

0 �
−� 0

∥
∥
∥
∥

and KC = CK. In

this case, a transformation of the form of (1.3), which is a Lyapunov transformation, reduces system (2.1) to the stationary system

(2.2)

The characteristic equation of this system

can be represented in the form

The conditions for system (2.2) to be stable have the form

(2.3)

It can be shown that � > 0 for all � > 0. The sole essential stability condition is therefore the first equality of (2.3) from which the exact
boundaries of the domain of instability are determined:

when 0 < � < 1, the system is unstable if � < � < �/
√

1 − �
when � < 1, the system is unstable if � > �.
The domain of instability of system (2.1) was constructed13 using of the theory of parametric resonance, with the assumption that � is

a small parameter.

3. The stability of the periodic motion of a heavy rotor

We will now consider a heavy, symmetric rotor mounted with a certain eccentricity e half way along a horizontally positioned elastic
shaft. We shall assume that the rotor executes plane-parallel motion. Suppose l is the distance from the point O, where the rotor is attached
to the shaft to the centre of mass of the rotor G. Assuming that there are no internal and external friction forces, the system of equations
of motion of the rotor in the fixed system of coordinates O�1�2 has the form12

(3.1)

Here,
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c is the flexural stiffness of the shaft, m and 	 are the mass and radius of inertia of the rotor, �j are the coordinates of the centre of mass of
the rotor in the system of coordinates O�1�2 and 
 is the angle between the axis O�1 and the vector OG. A prime denotes a derivative with
respect to �.

The system of Eq. (3.1) admits of the particular solution12

(3.2)

The system of Eq. (3.1), linearized in the neighbourhood of this particular solution, has the form

(3.3)

An analysis of the stability of system (3.3) was carried out12 by representating the matrix A(�) in the form of a sum of constant matrices
and a time-varying matrix with periodic elements

(3.4)

The characteristic equation of the stationary unperturbed system (� = 0) has the double roots 0, ±i.
A method has been proposed for calculating the characteristic exponents of systems of the form (3.3), (3.4), on the basis of which

formulae were obtained for the characteristic exponents in the above-mentioned problem under the assumption that � was of small
magnitude.12

We will now consider another method of partitioning the matrix A(t), in which we assume that the parameter � is small and that the
parameter � is arbitrary

(3.5)

It was found that the matrix A1(�, �) satisfies Eq. (1.2). The elements of the matrix C are zeros apart from c12 = −c21 = −1/2. Using
transformation (1.3), system (3.3) is reduced to the form

(3.6)

We now represent Eq. (3.6) in the form

(3.7)

where O3 and E3 are null and unit 3 × 3 matrices.
The analysis of the stability of system (3.3) using representation (3.4) is based on an examination of the eigenvalues of the constant

matrix A0, which does not contain the parameter �. Application of the partitioning (3.5) leads to an investigation of system (3.7) in which
the constant matrix W contains the parameter �. When � = 0, the exact solution of system (3.7) y(t) = exp(W(�)t)y(0) can be written out.

The eigenvalues �0 of the matrix W(�) have the form

(3.8)

Assuming that the magnitude of � is small, the characteristic exponents

of system (3.7) can be calculated using a well-known method.12
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It can be shown that the correction to the characteristic exponent �0
1,2 = 0, with an accuracy of up to terms in O(�2) inclusive, is equal

to zero and that the characteristic exponents �3,4, �5,6 do not contain the parameter � in the first power �(1)
k

(�) = 0, k = 3, 4, 5, 6.

The corrections �(2)
k

(�) k = 3, 4, 5, 6 have the form

(3.9)

Formulae (3.9) hold for any values of the parameter �. For small �, we obtain from formulae (3.9)

with an accuracy up to �3, which corresponds to the approximate formulae found earlier,12 where the parameter � was assumed to be
finite and the parameter � was assumed to be small.

4. A gyroscopic servosystem14

A gyroscopic servosystem has been considered with equations which, when there are no stochastic effects, can be represented in the
form14

(4.1)

Here, � and � are the angles defining the position of the axis of the gyroscope, � is the angular velocity of rotation of the rotor of the
gyroscope, k0� (k0 = const > 0) is the relative angular momentum and u(t) is the control moment, the expression for which is taken in the
form14

The constant coefficients k1 and k2 remain to be chosen.
This system belongs to the type of two-channel systems with modulation and a single inertialess alternating current channel.14

System (4.1) can be represented in the form of (1.4), where N1(t) ≡ E2 and

The matrices N2(t) and N3(t) satisfy Eq. (1.2) when C =
∥
∥
∥
∥

0 �
−� 0

∥
∥
∥
∥

. Transformation (1.3) reduces system (4.1) to a stationary system of the

form (1.5)

(4.2)

The characteristic equation of system (4.2) has the form

According to the Hurwitz criterion, the necessary and sufficient conditions for the asymptotic stability of system (4.2) when k0 �= 1, 2
can be represented in the form

(4.3)

System (4.2) is simply stable when k0 = 1 and k0 = 2 and the inequalities (4.3) are satisfied. Conditions (4.3) can be satisfied by a
corresponding choice of the control coefficients k1 and k2.
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In this case, the transformation (1.3) is a Lyapunov transformation and the stability conditions that have been obtained are therefore
the stability conditions of the initial system (4.1).
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